MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  / = [          ] ω           .


   = [          ] ,     [  ]    .




 /  = [          ] ,     [  ]    .



Para um sistema físico composto por partículas de spin zero, existe um potencial de Coulomb blindado que é conhecido como potencial de Yukawa. Tal pontencial é da forma


 /  = [          ] ,     [  ]    .

e que é, claramente, um potencial do tipo central. Na equação acima,  é uma constante (positiva) de acoplamento que configura a intensidade da força efetiva,  é a massa da partícula afetada pelo potencial,  é a velocidade da luz e  a constante de Planck. Naturalmente, podemos mostrar que o potencial  está associada a uma força sempre atrativa.

A História

Hideki Yukawa (físico teórico japonês) mostrou na década de 1930 que tal potencial resulta da interação/troca de um campo escalar massivo como o campo de um bóson, também maciço. Uma vez que o mediador do campo correspondente tem um certo alcance, que é inversamente proporcional à massa do mediador de partícula [1]. Dado que o alcance aproximado da força nuclear era conhecido, a equação Yukawa poderia ser utilizada para prever o massa de repouso aproximada da partícula mediadora do campo de força, mesmo antes de ser descoberto. No caso da força nuclear, esta massa foi previsto ser cerca de 200 vezes a massa do elétron, e isto foi mais tarde considerado ser uma previsão da existência do píon, antes de ter sido detectado, em 1947.

Tal potencial tem várias aplicações, incluindo a interacção entre dois núcleos. Dois núcleos podem experimentar forte interação atrativa devido à taxa de câmbio pions carregados, semelhante à forma como duas partículas interagem eletromagneticamente através da troca de fótons. Como o campo eletromagnético é "transportado" por fótons, o campo piônico potencial, expressamente descrito por Yukawa, é "transportado" por pions.

Relação com o potencial de Coulomb

Potencial em função de r

Se tomarmos o limite  →  (ou até mesmo a igualdade) no potencial de Yukawa, nós temos


 /  = [          ] ,     [  ]    .

de modo que podemos identificar a equação acima, com a ε, como o potencial de Coulomb. Diferentemente do potencial de Yukawa, podemos ver claramente que  decresce muito lentamente, enquanto que o potencial de Yukawa decresce muito rapidamente (a depender da massa m). Por essa razão, dizemos que o potencial de Yukawa é um potencial de curto alcance, enquanto que o potencial de Coulomb não é. No gráfico que é apresentado ao lado, podemos ver como o potencial de Yukawa comporta-se, com a distância , para diferentes valores de .



Em matemática e físicateoria da dispersão ou espalhamento é um campo para o estudo e entendimento do espalhamento de ondas e partículas. Espalhamento de ondas corresponde à colisão e espalhamento de uma onda com algum objeto material, por exemplo luz solar espalhada por gotas de chuva para a formação de um arco-íris. Espalhamento também inclui a interação de bolas de bilhar numa mesa, o espalhamento Rutherford (ou mudança de ângulo) de partículas alfa por núcleos de ouro, o espalhamento (ou difração) de Bragg de elétrons e raios X por um grupo de átomos, e o espalhamento inelástico de um fragmento de fissão nuclear que atravessa uma lâmina fina. Mais precisamente, o espalhamento consiste no estudo de como soluções de equações diferenciais parciais, propagando livremente num "passado distante", se juntam e interagem umas com as outras ou com uma condição de contorno, e então propagam-se para um "futuro distante". O "problema de espalhamento direto" é o problema de determinar a distribuição da radiação espalhada (ou fluxo de partículas espalhadas) baseadas na características do centro espalhador. O problema inverso de espalhamento é o problema na determinação das características de um objeto (como por exemplo, sua forma, constituição interna) a partir de dados medidos de radiação ou partículas espalhadas pelo objeto.

Desde sua primeira enunciação para radiolocalização, o problema encontrou um vasto número de aplicações, tais como ecolocalização, pesquisas geofísicas, testes não destritivos, imagens médicas e na teoria quântica de campos, para mencionar alguns.

Base conceitual

Os conceitos usados na teoria de espalhamento têm diferentes nomes em diferentes campos. O objetivo dessa sessão é apontar ao leitor alguns termos comuns.

Alvos compostos e equações de alcance

Quantidades equivalentes usadas na teoria de espalhamento de espécimes compostos, mas com uma variedade de unidades.

Quando um alvo é um conjunto de vários centros espalhadores cujas posições relativas variam de forma imprevisível, é costumeiro que se pense em uma equação de alcance cujos argumentos tomem diferentes formas em diferentes áreas de aplicação. O caso mais simples considera uma interação que remove partículas de um "feixe não espalhado" a uma taxa uniforme que é proporcional ao fluxo incidente  de partículas por unidade de área por unidade de tempo, ou seja, que


 /  = [          ] ,     [  ]    .

onde "Q" é um coeficiente de interação e "x" é a distância viajada no alvo.

equação diferencial ordinária de primeira ordem acima tem soluções da forma:


 /  = [          ] ,     [  ]    .

onde Io é o fluxo inicial, comprimento de caminho Δx ≡ x − xo, a segunda igualdade define uma interação de livre caminho médio λ, a terceira usa o número de alvos por unidade de volume, η, para definir uma área de seção de choque σ, e a última usa a densidade de massa do alvo, ρ, para definir uma densidade de livre caminho médio, τ. Dessa forma, podemos relacionar essas quantidades por meio de Q = 1/λ = ησ = ρ/τ, como mostrada na figura à esquerda.

Em espectroscopia de absorção eletromagnética, por exemplo, o coeficiente de interação (ou seja, Q em cm−1) é comumente chamado de opacidadecoeficiente de absorção e coeficiente de atenuação. Em física nuclear, seções de choque (ou seja, σ em barns ou unidades de 10−24 cm2), densidade de livre caminho médio (ou seja, τ em gramas/cm2), e seu recíproco, o coeficiente de atenuação de massa (em cm2/gram) ou "área por nucleon" são todos populares, enquanto em microscopia eletrônica o livre caminho médio inelástico [1] (ou seja, λ em nanômetros) é frequentemente discutido[2] ao invés dos outros.





Compton usou uma combinação de três fundamentais fórmulas representando os diversos aspectos da física clássica e moderna, combinando-os para descrever o procedimento quântico da luz[4].

  • Luz como uma partícula;
  • Dinâmica Relativística;
  • Trigonometria.

O resultado final nos dá a equação do espalhamento de Compton:


 /  = [          ] ,     [  ]    .

Onde:

 é o comprimento de onda do fóton antes do espalhamento,
 é o comprimento de onda do fóton depois do espalhamento,
me é a massa do elétron,
 é conhecido como o comprimento de onda de Compton,
θ é o ângulo pelo qual a direção do fóton muda,
h é a constante de Planck, e
c é a velocidade da luz no vácuo.

Coletivamente, o comprimento de onda de Compton é .





Comments

Popular posts from this blog